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Abstract

This paper considers the diffraction of incident surface waves by a floating elastic circular plate. We investigate the

hydroelastic response of the plate to a plane incident wave for two cases of water depth. An analytic and numerical

study is presented. An integro-differential equation is derived for the problem and an algorithm of its numerical

solution is proposed. The representation of the solution as series of Bessel functions is the key idea of the approach.

After a brief introduction and formulation of the problem, we derive the main integro-differential equation by the use

of the thin plate theory and Green’s theorem. The plate deflection, the free-surface elevation and the Green’s function

are expressed in cylindrical coordinates as series of Bessel functions. For the coefficients, a set of algebraic equations is

obtained, yielding the approximate solution for the case of infinite water depth. Then a solution is obtained for the

general case of finite water depth analogously. The exact solution is approximated by taking a finite number of roots of

the dispersion relation into account. Numerical results for the plate deflection, initiated wave pattern and free-surface

elevation are presented for various physical parameters of the problem, together with some remarks on the computation

and discussion.
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1. Introduction

The hydroelastic analysis of a very large floating platform (VLFP) in water waves received a great deal of attention

because of the design of large floating offshore structures for airports or runaways, breakwaters, artificial islands,

industrial space, etc. The objective of the study is to investigate the behavior of a VLFP and its influence on the surface

waves, i.e., diffraction of the waves by the VLFP. The main idea in the proposed concepts is to build a very large mat-

like structure; therefore, the thickness of VLFP is very small in comparison to its horizontal parameters. This kind of

floating platform can be modelled as a flexible thin plate with elastic properties. This theory can also be used to describe

the interaction between large ice fields and surface waves by inserting the ice physical properties instead of the plate

parameters. As water depth plays an important role in this kind of problem, the theory is divided into three cases: very

deep water (depth is considered to be infinite), water of finite depth, and shallow water.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Recently, a number of papers were published considering the hydroelastic analysis of VLFP. A very detailed

literature survey for this problem has been published recently by Watanabe et al. (2004). There are several approaches

used to describe the interaction between VLFPs and surface waves. We can distinguish the following: asymptotic theory

for short waves, e.g., Ohkusu and Namba (1996); parabolic approximation, e.g., Takagi (2002); ray theory (Hermans,

2003); variational equation method (Meylan, 2001); eigenfunction expansion method with determination of the

eigenfunctions numerically; Wiener-Hopf technique; Galerkin method, etc. Many of these results have been presented

at the International Workshops on Water Waves and Floating Bodies.

The analytical solution for the plates having one or two infinite dimensions, which simplify significantly the

complexity of analysis, can be derived with use of any of the approaches given above. For the plates of finite extent

numerical methods are often used. Mainly the indicated articles studied the plates of rectangular planform, while there

are only few papers considering arbitrarily shaped VLFPs. Several papers, studying circular plates, were presented

recently at international conferences. For the circular ice floe, the problem was solved by Meylan and Squire (1996) for

the case of deep water by use of the eigenfunction method. A closed-form solution for buoyant circular plate floating on

shallow water was developed by Zilman and Miloh (2000) with use of Stoker’s shallow water theory. This problem was

also solved by Tsubogo (2001) by an advanced boundary element method. The plate floating on shallow water under

an external load has been considered by Sturova (2003). For a finite water depth the problem was solved by Watanabe

et al. (2003) with use of the Galerkin method and Mindlin plate theory. Peter et al. (2003) presented a solution for the

same problem based on decomposing the solution into angular eigenfunctions. The present authors solved the problem

of hydroelastic response of a circular plate for water of finite and infinite depth; some preliminary results were presented

in Andrianov and Hermans (2004).

Here we consider the problem for a plate in the form of the circular disk for two different cases: deep water and water

of finite depth. An analytical study is presented for both cases. The circular plate floats at the surface of an ideal fluid.

We consider the circular plate with constant flexural rigidity and homogeneous stiffness. The edge of the plate is free of

shear forces, bending and twisting moments. We use Green’s theorem and an integro-differential formulation for the

deflection, as derived and described in Hermans (2003) and Andrianov and Hermans (2003). The plate deflection,

generated by incoming surface waves is represented as a series of Bessel functions, multiplied by cosine functions. The

approach presented allows us to study the plate deflection, the initiated wave pattern generated by the plate motion, and

the free-surface elevation.

At first, we study the behavior of the circular plate floating on the surface of the water of infinite depth. This would

appear to be a rather theoretical problem, but it is a good starting point to find a solution for the general and most

important case of finite water depth. Next, we consider the finite water depth case, where the general analysis and set of

equations are more complicated, as more roots of the water dispersion relation have to be taken into account. The

numerical results obtained are presented and discussed for various physical parameters of the problem. The conclusions

and the summary for possible extensions of the approach are given in the last section.
2. Formulation of the problem

In this section we derive the general mathematical formulation for the problem under consideration. The floating

thin elastic circular plate of radius r0 covers a part of the surface of the water, which is assumed to be an ideal

incompressible fluid. The value of water depth h is infinite for the case of deep water and finite and constant for the

other case. We assume that no space exists between the free-surface and the plate. The flexural rigidity of circular plate

is constant.

The plate deflection is generated by incoming surface waves. We assume that waves propagate in otherwise still water.

Also, it is assumed that incoming waves are propagating in the positive x-direction without loss of generality. The wave

amplitude is assumed to be small in comparison with other parameters of the problem.

The problem is considered in polar coordinates; they are related to Cartesian coordinates by r2 ¼ x2 þ y2,

j ¼ arctan y=x. The geometric sketch of the plate is shown in Fig. 1. At the free-surface z ¼ 0, we denote the plate

region as P (rpr0; j ¼ ½0; 2p�) with the plate contour S (r ¼ r0; j ¼ ½0; 2p�) and the open fluid region as F (r4r0;

j ¼ ½0; 2p�).
The velocity potential is introduced by rð3ÞFðr;j; z; tÞ ¼ Vðr;j; z; tÞ, where Vðq; tÞ is the fluid velocity vector.

The Laplacian in cylindrical coordinates is defined as

r2
ð3Þ ¼ Dð3Þ ¼

q2

qr2
þ
1

r
q
qr

þ
1

r2
q2

qj2
þ

q2

qz2
,
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Fig. 1. The geometry and coordinate system of the problem.
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where the subscript ð3Þ is used for three-dimensional operators, to distinguish them from two-dimensional opera-

tors D and r at the free surface. The velocity potential Fðq; tÞ is a solution of the governing Laplace equation in the

fluid, zo0,

Dð3ÞF ¼ 0, (1)

together with the boundary conditions at the free surface and at the bottom. The linearized kinematic condition in the

plate and water regions, z ¼ 0, has the form

qF
qz

¼
qw

qt
, (2)

where wðr;j; tÞ denotes either the deflection of the plate in P, or the free-surface elevation in F, and t is the time. The

linearized dynamic condition, derived from the linearized Bernoulli equation, is written as

P � Patm

rw

¼ �
qF
qt

� gw, (3)

at z ¼ 0, where rw is the density of the water, g is gravitational acceleration, Pðr;j; tÞ is the pressure in the fluid, and

Patm is the atmospheric pressure. Relations (2) and (3) are kinematic and dynamic conditions at the free surface, and the

linearized free-surface condition in the open water region F, z ¼ 0, takes the form

qF
qz

¼ �
1

g

q2F
qt2

. (4)

In the finite water-depth case the normal potential equals zero at the bottom z ¼ �h

qF
qz

¼ 0. (5)

The platform is modelled as an elastic plate with zero thickness. Such a model can be applied, as described above, due

to the small thickness and shallow draft of the platform. To describe the deflection of the plate wðr;jÞ, we apply the

isotropic thin plate theory, see, e.g., Timoshenko et al. (1974), which leads to a differential equation at z ¼ 0 in the plate

area P, known as the Gehring–Kirchhoff equation of plate motion

DD2w þ m
q2w
qt2

¼ P � Patm, (6)

where m is the mass of unit area of the platform, D is the flexural rigidity, expressed in terms of Young’s modulus E,

Poisson’s ratio n and the plate thickness hp as follows:

D ¼
Eh3p

12ð1� n2Þ
.
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From now on, the Laplacian is a two-dimensional operator

r2 ¼ D ¼
q2

qr2
þ
1

r
q
qr

þ
1

r2
q2

qj2
.

Following the procedure described in Hermans (2003) and Andrianov and Hermans (2003), we apply the operator

q=qt to (6) and use the surface conditions (2) and (3) to arrive at the following differential equation for the potential F
acting on the plate at z ¼ 0:

D

rwg
D2

þ
m

rwg

q2

qt2
þ 1

� �
qF
qz

þ
1

g

q2F
qt2

¼ 0. (7)

We consider harmonic waves and their potential can be written in the form

Fðr;j; z; tÞ ¼ fðr;j; zÞe�iot, (8)

where o is the wave frequency. In the same way, the deflection is written as wðr;j; tÞ ¼ wðr;jÞe�iot. Then we reduce

time-dependence and consider waves of a single frequency o and obtain at z ¼ 0 for the plate region P

fDD2
� mþ 1g

qf
qz

� Kf ¼ 0, (9)

where we have introduced K ¼ o2=g and the structural parameters D ¼ D=rwg, m ¼ mo2=rwg, which are constant.

For the open water region F, we have

qf
qz

� Kf ¼ 0. (10)

All definitions, given above, are valid for both infinite and finite water-depth cases.

The potential of the incident wave for water of finite depth has the form

finc
ðr;j; zÞ ¼

cosh k0ðz þ hÞ

cosh k0h

gA

io
eik0r cos j, (11)

where k0 is the wavenumber, and A is the wave amplitude of the incident wave. The wavenumber k0 is the positive real

solution of the water dispersion relation

k tanh kh ¼ K . (12)

For deep water, the potential is represented in the form

finc
ðr;j; zÞ ¼

gA

io
eik0r cos jþk0z. (13)

In this case the wavenumber is k0 ¼ K ¼ o2=g.

The wavelength of incoming waves is l ¼ 2p=k0. In a practical situation, the radius of the floating circular plate r0
might be of the order of a thousand meters, while the wavelength l is of the order of a hundred meters. Therefore, we

consider and compute numerically the situation when the wavelength is less than the diameter of the plate (lo2r0), but

our approach is also valid for the case of small circular disks (l42r0).

The edge of the circular plate is free of vertical shear forces, bending and twisting moments. Hence, the free edge

conditions at the plate contour S are written as

r2 �
ð1� nÞ

r
q
qr

þ
1

r
q2

qj2

� �� �
w ¼ 0, (14)

q
qr

r2 þ
ð1� nÞ
r2

q
qr

�
1

r

� �
q2

qj2

� �
w ¼ 0. (15)
3. Green’s function and deflection

The main objective of our study is to determine the plate deflection by solving a set of equations at the plate P. An

integro-differential equation can be derived if we apply the Green’s theorem. To complete the system, we use the free

edge conditions. In this section we describe the Green’s and deflection functions and the operations on the
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corresponding Bessel functions for the circular plate. The expressions for the Green’s function for water of infinite and

finite depth can be found in Wehausen and Laitone (1960).

We introduce the Green’s function for a source within the fluid, that in Cartesian coordinates satisfies

Dð3ÞG ¼ 4pdðx� nÞ, where d is the Dirac d-function, x is a source point and n is an observation point. The Green’s

function obeys the boundary conditions at the free surface ðGz ¼ KGÞ, and at the bottom, and the radiation condition.

For deep water, the three-dimensional Green’s function can be written in the following form:

G x; nð Þ ¼ �
1

R
þ

1

R1
� 2

Z
L

k

k � k0
J0ðkRÞekðzþzÞ dk, (16)

where R2 ¼ R2 þ ðz � zÞ2, R21 ¼ R2 þ ðz þ zÞ2, R is the horizontal distance, and J0ðkRÞ is the Bessel function. The

contour of integrationL is shown in Fig. 2. It passes underneath the singularity k ¼ k0 to fulfil the radiation condition.

The Green’s function in polar coordinates Gðr;j; z; r; y; zÞ for the source and observation points at z ¼ z ¼ 0 is

written as

Gðr;j; r; yÞ ¼ �2

Z
L

k

k � k0
J0ðkRÞdk, (17)

where the horizontal distance R in polar coordinates is R2ðr;j; r; yÞ ¼ r2 þ r2 � 2rr cosðy� jÞ. Here r and r are the

distances from the center of the plate to the source and observation points, respectively, and y� j is the angle between r

and r.
We apply Graf ’s addition theorem to the Bessel function J0ðkRÞ in Eq. (17). Following Tranter (1968) we write

J0ðkRÞ ¼
X1
q¼0

dqJqðkrÞJqðkrÞ cos qðy� jÞ, (18)

where J0ðkRÞ is represented as a combination of the Bessel functions JqðkrÞ and JqðkrÞ, d0 ¼ 1 and dq ¼ 2 for q40.

Finally, the Green’s function in polar coordinates for deep water takes the form

Gðr;j; r; yÞ ¼ �2

Z 1

0

k

k � k0

X1
q¼0

dqJqðkrÞJqðkrÞ cos qðy� jÞdk. (19)

The Green’s function for finite water-depth case obeys the conditions at the free surface, at the bottom Gz ¼ 0, and

the radiation condition. The three-dimensional Green’s function at z ¼ z ¼ 0 has the following form in polar

coordinates:

Gðr;j; r; yÞ ¼ �2

Z
L

k cosh kh

k sinh kh � K cosh kh
J0ðkRÞdk, (20)

where L is the contour of the integration in the complex k-plane, given in Fig. 2. Again we apply Graf ’s addition

theorem to the Bessel function in the integrand, and the Green’s function takes the form

Gðr;j; r; yÞ ¼ �2

Z 1

0

k cosh kh

k sinh kh � K cosh kh

X1
q¼0

dqJqðkrÞJqðkrÞ cos qðy� jÞdk. (21)

As in the eigenfunction approach [see, e.g., Kim and Ertekin (1998) for the finite depth case and Meylan and Squire

(1996) for the infinite depth case], we represent the plate deflection as a series of Bessel functions with corresponding

coefficients of the form

wðr;jÞ ¼
XM
m¼1

X1
n¼0

amnJnðkmrÞ cos nj, (22)
Fig. 2. Contour of the integration.
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where amn are unknown amplitude functions and km are the reduced wavenumbers. It will be shown later that km,

m ¼ 1; . . . ;M, obeys the plate dispersion relation. M is the number of wave modes, i.e., number of roots of the plate

dispersion relation, taken into account.

For numerical computations the upper limit of q in Eq. (19) or Eq. (21) and n in Eq. (22) will be taken as N, which is a

truncation parameter of the problem. We can do this because of the decaying behavior of the Bessel functions with

increasing order. Convergence of the final results is verified in the numerical computations. All terms of the order higher

than N are negligibly small.

In the next section we apply the Green’s theorem at z ¼ z ¼ 0. Application of Green’s theorem at zo0 together

with expansion (22) gives rise to the standard eigenfunction expansion as can be found in Meylan and Squire (1996) for

the potential.
4. Infinite water depth

Here we apply Green’s theorem to obtain the integro-differential equation for the potential and vertical

displacements. Then an approximate solution is derived for the more theoretical and less complicated case of deep

water. The deep-water case is a good intermediate step for deriving the solution for the finite water-depth case, which is

of our main interest. The main integro-differential equation has been derived for the general three-dimensional situation

in Hermans (2001) and Andrianov and Hermans (2003). Now we rederive it in polar coordinates for the problem of

the circle.

Application of Green’s theorem leads to the following expression at z ¼ z ¼ 0 for the total potential:

4pfðr;jÞ ¼ 4pfinc
ðr;jÞ þ

Z
P

Kfðr; yÞ �
qfðr; yÞ

qz

� �
Gðr;j; r; yÞrdrdy, (23)

where the free-surface condition for the Green’s function has been used.

We use the notation fF for the potential function in open water region F, it is the superposition of the incident

wave potential finc and fdis, which is the sum of the classical diffraction potential and radiation potential, as follows:

fF
¼ finc

þ fdis. (24)

The potential fdis must satisfy the Sommerfeld radiation condition

ffiffiffi
r

p q
qr

� ik0

� �
fdis

¼ 0 (25)

as r ! 1. The total potential in the area covered by the plate P is denoted by fP.

Using the dynamic condition (9) for the plate region P to express fP in terms of an operator acting on fP
z , we obtain

the following equation:

fDD2
� mþ 1gfP

z ¼
K

4p

Z
P

fDD2
� mgfP

z Gðr;j; r; yÞrdrdyþ finc
z , (26)

where for the last term, which represents the potential of the incoming waves, condition (10) has been used. Relation

(26) is suitable for further analysis—to end up with the integro-differential equation for the plate deflection. We switch

from the potential to the deflection function by use of the expression

fP
z ¼

o
i

w, (27)

derived from Eq. (2). Hence, the following equation is obtained:

fDD2
� mþ 1gwðr;jÞ ¼

K

4p

Z
P

fDD2
� mgwðr; yÞGðr;j; r; yÞrdrdyþ Aeik0r cos j (28)

for the plate deflection w at the free surface z ¼ 0. Eq. (28) can be considered as the governing equation for the problem

of the diffraction of surface waves on the circular plate, which floats in deep water.
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We insert the relations for the deflection (22) and Green’s function (19) into Eq. (28) and obtain the following

integro-differential equation:

fDD2
� mþ 1g

XM
m¼1

XN

n¼0

amn JnðkmrÞ cos nj

þ
K

2p

Z 2p

0

Z r0

0

fDD2
� mg

XM
m¼1

XN

n¼0

amnJnðkmrÞ cos ny

�

Z 1

0

k

k � k0

XN

q¼0

dqJqðkrÞJqðkrÞ cos qðy� jÞdk

 !
rdrdy ¼ A

XN

n¼0

�nJnðk0rÞ cos nj, ð29Þ

where �n ¼ dni
n. Due to the orthogonality relation for the cosine functions we only get a nonzero contribution in the

integrand for n ¼ q. Next we work out the integration with respect to r and y. The integration over r, in accordance with

Korn and Korn (1968), gives usZ r0

0

JnðkrÞJnðkmrÞrdr ¼
r0

ðk2
� k2mÞ

½kJnþ1ðkr0ÞJnðkmr0Þ � kmJnðkr0ÞJnþ1ðkmr0Þ�, (30)

while the integration over y gives us 2p for n ¼ 0 and dnp cos nj for n40, and then 2p cos nj for all n.

In such a way, the following set of N þ 1 equations is obtained from the integro-differential equation (29):

XM
m¼1

ðDk4m � mþ 1ÞamnJnðkmrÞ þ Kr0

Z 1

0

XM
m¼1

ðDk4m � mÞamnJnðkrÞ

�
k

ðk � k0Þðk
2
� k2mÞ

½kJnþ1ðkr0ÞJnðkmr0Þ � kmJnðkr0ÞJnþ1ðkmr0Þ�dk ¼ A�nJnðk0rÞ, ð31Þ

where n ¼ 0; . . . ;N. Here k ¼ km is not a singularity of the integrand. For plates with one infinite dimension, the

deflection can be represented as a superposition of exponential functions. Therefore, it is easier to work out

the integration over k in the integro-differential equation for those plates. For a circular plate, the integration in the

complex plane needs special attention, as described below.

If we are at the plate region P (ror0), we represent the Bessel function Jqðkr0Þ, where q is n or n þ 1, as the half-sum

of Hankel functions of the first and second kind

Jqðkr0Þ ¼
Hð1Þ

q ðkr0Þ þHð2Þ
q ðkr0Þ

2
. (32)

Then the integral in Eq. (31) is split up in two; these two we transform into integrals along the vertical axis in the

complex k-plane plus the sum of the residues. All poles in the complex plane are shown in Fig. 3. For the first integral

with Hð1Þ
q ðkr0Þ, the contour can be closed in the upper half-plane with the poles k ¼ km, and for the second one with

Hð2Þ
q ðkr0Þ in the lower half-plane, where the poles are k ¼ �km.
Fig. 3. Zeros of the dispersion relation for deep water.
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We consider two situations separately to derive the plate dispersion relation. In the first integral each of the

Bessel functions with the argument kmr0 is represented as the half-sum of Hankel functions of first and second kind.

After an application of Cauchy residue lemma to the integrand at the poles k ¼ km, the Wronskian W can be used,

see, e.g., Abramowitz and Stegun (1964), in those poles for the combination of Hankel functions:

WfHð1Þ
n ðkmr0Þ;H

ð2Þ
n ðkmr0Þg

¼ H
ð1Þ
nþ1ðkmr0ÞH

ð2Þ
n ðkmr0Þ �Hð1Þ

n ðkmr0ÞH
ð2Þ
nþ1ðkmr0Þ ¼ �

4i

pkmr0
. ð33Þ

For the second integral we apply the procedure described above and use the fact that Hð2Þ
q ð�kmr0Þ ¼ �eqpiHð1Þ

q ðkmr0Þ.

The coefficients of Jnðkr0Þ are considered to derive the dispersion relation for deep water

ðDk4 � mþ 1Þk ¼ �k0, (34)

where the plus sign on the right-hand side corresponds to the first situation, and the minus sign to the second. The roots

of the plate dispersion relation (34) are shown in Fig. 3: two real roots �k1, and four complex roots�k2 and �k3, which
are symmetrically placed with respect to both the real and imaginary axes. Due to the symmetry of the Bessel function,

three roots of the plate dispersion relation (34) are taken into account: real positive k1, complex k2 and k3 with equal

imaginary parts and equal but opposite-sign real parts. The real root k1 represents the main travelling wave mode, and

the two complex roots represent damped waves.

In this way, for the case of infinite water depth we use three roots of the plate dispersion relation, as for the semi-

infinite plate in Andrianov and Hermans (2003), and in the equations of this section the upper limit of the summation

M is equal to 3. For the case of finite depth, more than three roots are taken into account.

In the first integral we also obtain a contribution of the pole k ¼ k0 of the integrand. This contribution has

to cancel the term on the right-hand side of Eq. (31). Because we use the deep water case as the introduction to the finite

water-depth case, we do not consider the contribution of the integral along the imaginary axis, and that makes

our solution approximate. The application of the Jordan lemma and the contribution of the pole k ¼ k0 lead us to

N þ 1 relations:

pir0
XM
m¼1

k2
0

k2
0 � k2m

½k0H
ð1Þ
nþ1ðk0r0ÞJnðkmr0Þ � kmH

ð1Þ
n ðk0r0ÞJnþ1ðkmr0Þ�

�ðDk4m � mÞamn ¼ A�n. ð35Þ

The system for the determination of the unknown amplitudes amn can be completed by the free edge conditions. We

obtain N þ 1 equations from each of the free edge conditions (14) and (15) at r ¼ r0:

XM
m¼1

Jnðkmr0Þ �k2m þ
ð1� nÞnðn � 1Þ

r20

� �
þ Jnþ1ðkmr0Þkm

ð1� nÞ
r0


 �
amn ¼ 0, (36)

XM
m¼1

Jnðkmr0Þ �
n

r0
k2m þ

ð1� nÞn2ð1� nÞ

r30

� �


þJnþ1ðkmr0Þ k3m þ
ð1� nÞn2

r20
km

� ��
amn ¼ 0. ð37Þ

In such a way we derive the system of 3N þ 3 equations, Eqs. (35)–(37), for the determination of 3N þ 3 amplitudes

amn. When the amplitudes are known, the plate deflection can be calculated by Eq. (22).
5. Finite water depth

Here we consider the general case when the plate floats on water of finite depth. The governing integro-

differential equation can be derived analogously to the work presented in the previous section. It takes the form

of Eq. (28), the same as in the deep water case, where we use the Green’s function for the finite water-depth case,

see Eq. (21).
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Inserting the relations for the plate deflection (22) and Green’s function (21) in Eq. (28), we obtain the following

expanded integro-differential equation for the water of finite depth:

fDD2
� mþ 1g

XM
m¼1

XN

n¼0

amnJnðkmrÞ cos nj

¼
K

2p

Z 2p

0

Z r0

0

fDD2
� mg

XM
m¼1

XN

n¼0

amnJnðkmrÞ cos ny
Z 1

0

k cosh kh

K cosh kh � k sinh kh

 

�
XN

q¼0

dqJqðkrÞJmðkrÞ cos qðy� jÞ dk

!
rdrdyþ A

XN

n¼0

�nJnðk0rÞ cos nj ð38Þ

at the free surface z ¼ 0. The case q ¼ n has to be considered only, as was done for infinitely deep water. First we

close the contour of the integration. Then the integration with respect to r and y in Eq. (38) leads us to the set of

N þ 1 equations

XM
m¼1

ðDk4m � mþ 1ÞamnJnðkmrÞ þ Kr0

Z
L

XM
m¼1

ðDk4m � mÞamnJnðkrÞ

�
k cosh kh

ðK cosh kh � k sinh khÞðk2
� k2mÞ

½kJnþ1ðkr0ÞJnðkmr0Þ � kJnðkr0ÞJnþ1ðkmr0Þ�dk

¼ A�nJnðk0rÞ, ð39Þ

where n ¼ 0; . . . ;N.

Now we consider the meromorphic function

pðkÞ ¼
k cosh kh

K cosh kh � k sinh kh
. (40)

The poles of function pðkÞ are the roots of the dispersion relation for water region (12) k ¼ �ki, i ¼ 0; . . . ;M � 3,

where k0 is the positive real root, and ki, for ia0, is the positive imaginary root, as shown in Fig. 4. The function

pðkÞ is bounded for all roots. Then the meromorphic function for our problem can be described by the

following relation:

pðkÞ ¼
XM�3

i¼0

k2
i

k2
i h � K2h þ K

1

k þ ki

þ
1

k � ki

� �
. (41)

This procedure has been applied in John (1950) and previously described by Whittaker and Watson (1920). The

upper bound in the summation is chosen in accordance with the number of imaginary roots of the water dispersion

relation (12).

Next, we insert relation (41) into Eq. (39), where we consider two integrals in the complex k-plane, which can

be combined into one integral from �1 to þ1 with the poles k ¼ ki only. Finally, we derive the governing
Fig. 4. Closure of the integration contour in the upper half-plane.
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integro-differential equation for the case of finite water depth

XM
m¼1

ðDk4m � mþ 1ÞamnJnðkmrÞ þ Kr0

Z 1

�1

XM
m¼1

ðDk4m � mÞamn

JnðkrÞ

ðk2
� k2mÞ

�
XM�3

i¼0

k2
i

ðk2
i h � K2h þ KÞðk � kiÞ

½kJnþ1ðkr0ÞJnðkmr0Þ � kmJnðkr0ÞJnþ1ðkmr0Þ�dk

¼ A�nJnðk0rÞ ð42Þ

at z ¼ 0. Now we have to work out the integration in the complex plane, that can be done analogously to the deep water

case. The contour of the integration is depicted in Fig. 4.

We split up the Bessel functions with the argument kr0 into half-sums of Hankel functions by Eq. (32) and then the

integral in Eq. (42) becomes a sum of the integrals in the upper and lower half-planes. The sum of the residues gives us

the same result in both situations due to the property of the meromorphic function. Also Wronskian (33) can be used

for the combination of the Hankel functions. The residue lemma is applied at the poles k ¼ km, that leads to the

standard dispersion relation for water of finite depth if we consider the coefficients of Jnðkr0Þ. The plate dispersion

relation has the following form:

ðDk4 � mþ 1Þk tanh kh ¼ K . (43)

The dispersion relation (43) has two real roots �k1, and four complex roots �k2 and �k3, symmetrically placed

with respect to both the real and imaginary axes, those six being of the same order as in the deep-water case,

as well as infinitely many purely imaginary roots. Here we take into account M roots of Eq. (43): one real positive

root k1, and two complex roots k2 and k3, with equal imaginary parts and equal but opposite-signed real parts,

as well as M � 3 imaginary roots, all located in the upper half-plane. We notice that the position of the roots km

in the complex k-plane is similar to the roots of the water dispersion relation (12), except of the two complex roots k2
and k3. The derivation of the dispersion relation (43) from IDE (42) is a good way to check the correctness of our

approach.

Then we consider the contribution of the roots of the water dispersion relation, plotted in Fig. 4. The contour of

integration for the integrals with Hð1Þ
q ðkr0Þ may be closed in the upper-half plane, and for the integrals with Hð2Þ

q ðkr0Þ in

the lower half-plane. In the latter case we get a zero contribution because the poles are as indicated in the Fig. 4. The

application of the Cauchy theorem to the integral closed in the upper half-plane gives the following N þ 1 equations to

determine the amplitudes amn:

piKr0
XM
m¼1

k2
0

ðk2
0 � k2mÞðk

2
0h � K2h þ KÞ

�½k0H
ð1Þ
nþ1ðk0r0ÞJnðkmr0Þ � kmH

ð1Þ
n ðk0r0ÞJnþ1ðkmr0Þ�ðDk4m � mÞamn ¼ A�n, ð44Þ

and the poles at the imaginary axis k ¼ ki result in a set of ðM � 3ÞðN þ 1Þ equations:

piKr0
XM
m¼1

k2
i

ðk2
i � k2mÞðk

2
i h � K2h þ KÞ

�½kiH
ð1Þ
nþ1ðkir0ÞJnðkmr0Þ � kmH

ð1Þ
n ðkir0ÞJnþ1ðkmr0Þ�ðDk4m � mÞamn ¼ 0, ð45Þ

where i ¼ 1; . . . ;M � 3. The edge conditions (36) and (37) give us 2ðN þ 1Þ equations as in previous section. So, we

derive the system of MðN þ 1Þ equations, Eqs. (44), (45), (36), (37), to determine the amplitudes amn for the plate

floating in water of finite depth. After solving of this system, the deflection of the circular plate can be computed by

formula (22).

The finite depth model can be used for the problems of shallow water, and the results obtained are of higher accuracy,

as more roots of the water and plate dispersion relations are taken into account.
6. Initiated wave pattern and free-surface elevation

Here we study the total free-surface elevation and a wave pattern, generated by the plate motion. It is possible to

determine the free-surface elevation with the use of our approach for the plate-water interaction and integro-differential

equation. The wave field initiated by the plate motion is the sum of the scattered and diffracted wave fields.
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The total potential in F (r4r0) is represented in Eq. (24) as the sum of the incident wave potential and the potential

of waves which appeared due to the plate vibration. Therefore, the free-surface elevation z in the open fluid region F

equals to the sum of the incident wave elevation and the additional wave elevation generated by the plate motion,

zðr;jÞ ¼ zincðr;jÞ þ zpmðr;jÞ, (46)

where the value of elevation zinc is known, as it is the parameter of the incident wave field, and the value of zpm may be

obtained from the analysis of an integro-differential equation.

Analogously to the treatment of the plate area P we can derive, for the region F, from Eq. (26) the expression

z ¼ Aeik0r cos j þ
K

4p

Z
P

fDD2
� mgwðr; yÞGðr;j; r; yÞrdrdy. (47)

Finally, with the use of Eq. (47), we obtain the following expression for the free-surface elevation for the water of

infinite depth:

zðr;jÞ ¼ Aeik0r cos j � pir0
XM
m¼1

k2
0

ðk2
0 � k2mÞ

ðDk4m � mÞ

�
XN

n¼0

amn½k0Jnþ1ðk0r0ÞJnðkmr0Þ � kmJnðk0r0ÞJnþ1ðkmr0Þ�H
ð1Þ
n ðk0rÞdk. ð48Þ

To obtain this result previously the residue lemma at the pole k ¼ k0 is used.

For the case of finite water depth, after the use of the residue lemma at the poles k ¼ ki, we obtain the following

expression for the free-surface elevation:

zðr;jÞ ¼ Aeik0r cos j � piKr0
XM
m¼1

XM�3

i¼0

k2
i

ðk2
i � k2mÞðk

2
i h � K2h þ KÞ

ðDk4m � mÞ

�
XN

n¼0

amn½kiJnþ1ðkir0ÞJnðkmr0Þ � kmJnðkir0ÞJnþ1ðkmr0Þ�H
ð1Þ
n ðkirÞdk. ð49Þ

Expressions (48) and (49) are for the total free-surface elevation. To study the initiated wave pattern, i.e., to see the

consequence of the plate presence, the incident field may be subtracted out from these expressions. The second terms on

the right-hand sides of formulas (48) and (49) represent zpm for the cases of infinite and finite water-depth, respectively.

The details of numerical computation are given in the next section.
7. Numerical results and discussion

In this section, numerical results are given for the hydroelastic behavior of the circular plate for different values of the

physical parameters. Results are presented for relevant and practically important cases. Also some remarks on the

numerical calculation and notes about the results obtained are given.

The calculation of the Bessel functions of complex argument, including k2 and k3, has to be carried out carefully. The
amplitudes amn of each wave mode behave as decaying functions because of the decay of the Bessel functions with

respect to the order n, common for the Bessel functions and amplitudes. Similar behavior of these amplitudes was

reported by Zilman and Miloh (2000) for shallow water. If we increase the value of flexural rigidity or radius, the decay

is faster. Taking into account first the 30 terms of the series results in sufficient accuracy for realistic values of rigidity.

Even for very low rigidity, taking of this number of the terms is sufficient too.

To avoid difficulties in the numerical computation when the argument of the function is small, in principle it is

possible to use the recurrence relation described in Abramowitz and Stegun (1964),

Cnþ1ðzÞ ¼
2n

z
CnðzÞ � Cn�1ðzÞ, (50)

where C denotes functions J, Hð1Þ or Hð2Þ in our formulation, and z denotes the arguments in the corresponding

functions.

Numerical calculations are based on various values of the plate radius and flexural rigidity, while Poisson’s ratio

n ¼ 0:25 and ratio m=rw ¼ 0:25 m are constant. Taking the wave amplitude as A ¼ 1 m, the water depth and incident

wavelength are varied, which lead to different values of the wavenumber k0 and of the frequency o. The number of the
Bessel function modes, which are taken into account, as described above, is N ¼ 30. The number of the roots of the
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Fig. 6. Deflection of the circular plate, as in Fig. 5, for l ¼ 100 m.

Fig. 5. Deflection of the circular plate, for l ¼ 50 m, r0 ¼ 500 m, D ¼ 105 m4: (a) infinite depth, (b) finite depth, h ¼ 20 m.

Fig. 7. Deflection of the circular plate, for h ¼ 100 m, r0 ¼ 500 m, D ¼ 105 m4: (a) l ¼ 50 m, (b) l ¼ 100 m, (c) l ¼ 200 m, (d) l ¼ 500m.

A.I. Andrianov, A.J. Hermans / Journal of Fluids and Structures 20 (2005) 719–733730
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plate dispersion relation for the finite water-depth case (43), which are taken into account, is M ¼ 10. Especially for

shallow water, the difference of the results due to the number of roots M can be hardly seen, while for the case of deep

water the influence of the number of roots can be seen in the area close to the plate edge. The choice of such values of

truncation parameters M and N was also justified by numerical tests. More details about the number of the roots has

been published in Andrianov and Hermans (2003).

The numerical results are plotted for the real part of the plate deflection normalized by the wave amplitude ReðwÞ=A,

denoted by W in the figures. The results for both cases of the water depth are shown in the figures for a constant plate

radius and rigidity and different wavelengths and water depths. The results for the circular plate on water of infinite

depth are shown in Figs. 5(a) and 6(a). The results for the case of finite water depth are shown in all other subplots of

Figs. 5–8. We can see clearly the wave propagation through the plate area.

The figures shown demonstrate that the wave travelling through the plate propagates with a curved wave front. This

is especially prominent for cases when the wavelength is much smaller than the diameter of the circle. The plate

deflection is highly dependent on the ratio between its radius r0 and the wavelength l. We found that for the rigidity

D4107 m4, the plate behaves as a very rigid body, whereas for Do103 m4, the plate has hardly any influence on the

surface waves. Realistic values of the reduced flexural rigidity D are of the order of about 107 m4 for the plate, while for

ice it can be of the order of about 105 m4. The rigidity of the floating platform, Young’s modulus and Poisson’s ratio are

highly dependent on the type of the structure and material used. In a zone close to the plate edge the deflection displays

special behavior and can be quite different from the deflection in the center zone for low rigidity of the floating plate.

Also we found that computational results for large values of depth, h4100 m, are almost independent of water depth.

So, for such deep water, the depth does not have a strong influence on the results, and for this situation it is sufficient to

take M ¼ 10 as well. With decreasing water depth the results for the plate deflection and free-surface elevation are

changing gradually, and then the water depth itself has a growing influence on the results.

For smaller values of the plate rigidity or stiffness the plate deflection increases. If the wavelength is decreasing, then

the value of the deflection grows. The deflection is larger numerically also when the water depth increases.
Fig. 8. Deflection of the circular plate, for h ¼ 100 m, r0 ¼ 500 m, D ¼ 107 m4: (a) l ¼ 100 m, (b) l ¼ 500 m.

Fig. 9. Initiated wave pattern, for h ¼ 100 m, l ¼ 500m, r0 ¼ 500 m, rf ¼ 2500m: (a) D ¼ 106 m4, (b) D ¼ 107 m4.
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Fig. 10. (a) Initiated wave pattern and (b) free-surface elevation, for l ¼ 500m, r0 ¼ 500 m, rf ¼ 2500m, D ¼ 108 m4.

Fig. 11. (a) Initiated wave pattern and (b) free-surface elevation, for h ¼ 100m, l ¼ 500 m, r0 ¼ 500 m, rf ¼ 2500m, D ¼ 108 m4.

A.I. Andrianov, A.J. Hermans / Journal of Fluids and Structures 20 (2005) 719–733732
In Fig. 9 we show results for the initiated wave pattern, i.e. for the free-surface elevation zpm, generated by the motion
of the circular plate. The subplots are given for the surface of the fluid domain of radius rf , for the water of finite depth.

The initiated wave pattern is highly dependent on the water depth h and physical plate properties.

In Figs. 10 and 11 numerical results are given for the initiated wave pattern, subplots (a), and the free-surface

elevation, subplots (b), for the cases of infinite and finite water depth. With the growth of the plate flexural rigidity

(also stiffness or Poisson’s ratio) the influence of the plate motion on the total elevation of the water surface grows as

well. All figures are symmetric about the x-axis, because incoming plane waves propagate in the x-direction and their

crests are parallel to the y-axis.
8. Conclusions and summary

The problem of the interaction between a floating elastic circular plate and incident surface waves is solved. The

analytical and numerical study of the plate hydroelastic behavior is presented. The integro-differential equation for the

problem is derived, and the algorithm of its numerical solution is proposed. For the case of finite water depth the system

of equations for the expansion coefficients is obtained analytically. For infinitely deep water the problem is solved

partly.

The finite water-depth model can be used to solve the plate–water interaction problem for the case of shallow or

infinite depth. Taking the limits h ! 1 and h ! 0, we can derive the dispersion relation relations for deep or

shallow water from the dispersion for the water of finite depth. The floating platforms are located in offshore zones,

usually close to shore. Normally, the water depth is rather small in such zones, but as the wavelength could be short

and long it is more universal to use the finite water depth results to describe the response of the plates to ocean or

sea waves.

The initiated wave pattern and the free-surface elevation in the open water region, the reflection and the transmission

of incoming waves can also be described by the use of the derived integro-differential equation. In contrast to other

papers, by means of our approach we may find the plate deflection and free-surface elevation using one set of the

equations. The approach presented can be extended to other rotational symmetric configurations of the plate.



ARTICLE IN PRESS
A.I. Andrianov, A.J. Hermans / Journal of Fluids and Structures 20 (2005) 719–733 733
The approach is valid when the plate thickness and draft are assumed to be zero. To extend our method to the case of

finite thickness of the plate, we may do the following. The deflection of the plate may be represented in the form

w ¼ wð0Þðkð0Þm Þ þ dwð1Þ
ðkð0Þm ; kð1Þm Þ, (51)

where wð0Þ is the solution obtained in the foregoing with the zero-thickness assumption, and kð0Þm are the roots of the

plate dispersion relation, also given in the foregoing, d is the draft of the plate, the superscripts denote the draft order.

To avoid secular terms in wð1Þ, kð0Þm will be determined. The term wð1Þ then can be derived with use of the function wð0Þ

and the extended dispersion relation for the first draft order, where the roots kð1Þm are expressed via kð0Þm .

One of possible applications of the method is its use for the hydroelastic analysis of a VLFP for, say, a floating

airport. The planform of a VLFP depends on the currents of the sea or ocean, where it is planned to place the floating

airport, the distance from the coast, water depth, expected diffracted pattern, etc. In some cases it can make sense to

construct the VLFP of an arbitrary horizontal shape, for instance, of a circular planform.

By inserting the physical properties of ice instead of those of the elastic plate, we can use the present approach to

study the motion of large ice fields in water waves. There are so-called pancake ice fields with horizontal shape very

close to a circle; in that case the ice-water interaction may be studied by the given theory.
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